Macaulay2 » Documentation
Packages » ReesAlgebra :: reesIdeal(...,DegreeLimit=>...)
next | previous | forward | backward | up | index | toc

reesIdeal(...,DegreeLimit=>...) -- Bound the degrees considered in the saturation step. Defaults to infinity

Description

where X is a non-negative integer. Stop computation at degree X. This is described in the documentation node for saturate. Here X is a positive integer. Each of these functions computes the Rees Algebra using a saturation step, and the optional argument causes the saturation process to stop after that number of s-pairs is found. This is described in the documentation node for saturate.

See also

Functions with optional argument named DegreeLimit:

  • compose(Module,Module,Module,DegreeLimit=>...) -- see compose -- composition as a pairing on Hom-modules
  • End(...,DegreeLimit=>...) -- see End -- module of endomorphisms
  • gb(...,DegreeLimit=>...) -- see gb -- compute a Gröbner basis
  • Hom(...,DegreeLimit=>...) -- see Hom -- module of homomorphisms
  • homomorphism'(...,DegreeLimit=>...) -- see homomorphism' -- get the element of Hom from a homomorphism
  • intersectInP(...,DegreeLimit=>...) -- see intersectInP(...,BasisElementLimit=>...) -- Option for intersectInP
  • minimalBetti(...,DegreeLimit=>...) -- see minimalBetti -- minimal betti numbers of (the minimal free resolution of) a homogeneous ideal or module
  • pushForward(...,DegreeLimit=>...) -- see pushForward(RingMap,Module) -- compute the pushforward of a module along a ring map
  • quotient(...,DegreeLimit=>...)
  • analyticSpread(...,DegreeLimit=>...)
  • associatedGradedRing(...,DegreeLimit=>...)
  • distinguished(...,DegreeLimit=>...)
  • isLinearType(...,DegreeLimit=>...)
  • isReduction(...,DegreeLimit=>...)
  • minimalReduction(...,DegreeLimit=>...)
  • multiplicity(...,DegreeLimit=>...)
  • normalCone(Ideal,DegreeLimit=>...)
  • normalCone(Ideal,RingElement,DegreeLimit=>...)
  • reesAlgebra(...,DegreeLimit=>...)
  • reesIdeal(...,DegreeLimit=>...) -- Bound the degrees considered in the saturation step. Defaults to infinity
  • specialFiber(...,DegreeLimit=>...)
  • specialFiberIdeal(...,DegreeLimit=>...)
  • saturate(...,DegreeLimit=>...)
  • syz(...,DegreeLimit=>...) -- see syz(Matrix) -- compute the syzygy matrix

Further information

  • Default value: {}
  • Function: reesIdeal -- Compute the defining ideal of the Rees Algebra
  • Option key: DegreeLimit -- an optional argument

The source of this document is in ReesAlgebra.m2:2182:0.