Macaulay2 » Documentation
Packages » SimplicialComplexes :: grunbaumBallComplex(PolynomialRing)
next | previous | forward | backward | up | index | toc

grunbaumBallComplex(PolynomialRing) -- make a nonshellable 3-ball with 14 vertices and 29 facets

Synopsis

Description

Attributed to F. Alberto Grünbaum, this method returns a triangulation of a 3-ball with 14 vertices and 29 facets that is not shellable.

i1 : S = ZZ/101[a..s];
i2 : Δ = grunbaumBallComplex S;
i3 : matrix {facets Δ}

o3 = | hlmn elmn gkmn fkmn ghmn efmn bhln beln ghjn fhjn bfhn befn agkm afkm
     ------------------------------------------------------------------------
     ghim egim aegm aefm aghj dfhj adhj bghi cegi bcgi abgh bdfh abdh aceg
     ------------------------------------------------------------------------
     abcg |

             1      29
o3 : Matrix S  <-- S
i4 : dim Δ

o4 = 3
i5 : fVector Δ

o5 = {1, 14, 54, 70, 29}

o5 : List
i6 : assert(dim Δ === 3 and isPure Δ)
i7 : assert(fVector Δ === {1,14,54,70,29})

This abstract simplicial complex is Cohen-Macaulay but not shellable.

Our enumeration of the vertices follows the gruenbaum example in Masahiro Hachimori's simplicial complex library.

See also

Ways to use this method: