Macaulay2
»
Documentation
Packages
»
SimplicialComplexes
::
Index
next | previous | forward | backward | up |
index
|
toc
SimplicialComplexes : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
algebraicShifting
-- the algebraic shifting of a simplicial complex
algebraicShifting(...,Multigrading=>...)
-- the algebraic shifting of a simplicial complex
algebraicShifting(SimplicialComplex)
-- the algebraic shifting of a simplicial complex
bartnetteSphereComplex
-- make a non-polytopal 3-sphere with 8 vertices
bartnetteSphereComplex(PolynomialRing)
-- make a non-polytopal 3-sphere with 8 vertices
barycentricSubdivision
-- create the barycentric subdivision of a simplicial complex
barycentricSubdivision(SimplicialComplex,Ring)
-- create the barycentric subdivision of a simplicial complex
barycentricSubdivision(SimplicialMap,Ring,Ring)
-- create the map between barycentric subdivisions corresponding to a simplicial map
bjornerComplex
-- make a shellable 2-polyhedron with 6 vertices
bjornerComplex(PolynomialRing)
-- make a shellable 2-polyhedron with 6 vertices
boundaryMap
-- make a boundary map between the oriented faces of an abstract simplicial complex
boundaryMap(...,Labels=>...)
-- make a boundary map between the oriented faces of an abstract simplicial complex
boundaryMap(ZZ,SimplicialComplex)
-- make a boundary map between the oriented faces of an abstract simplicial complex
buchbergerResolution
-- make a Buchberger resolution of a monomial ideal
buchbergerResolution(List)
-- make a Buchberger resolution of a monomial ideal
buchbergerResolution(MonomialIdeal)
-- make a Buchberger resolution of a monomial ideal
buchbergerSimplicialComplex
-- make the Buchberger complex of a monomial ideal
buchbergerSimplicialComplex(List,Ring)
-- make the Buchberger complex of a monomial ideal
buchbergerSimplicialComplex(MonomialIdeal,Ring)
-- make the Buchberger complex of a monomial ideal
coefficientRing(SimplicialComplex)
-- get the coefficient ring of the underlying polynomial ring
cohomology(...,Degree=>...)
-- compute the relative homology of two simplicial complexes
cohomology(ZZ,SimplicialComplex,Degree=>...)
-- compute the reduced cohomology of an abstract simplicial complex
cohomology(ZZ,SimplicialComplex,Ring,Degree=>...)
-- compute the reduced cohomology of an abstract simplicial complex
cohomology(ZZ,SimplicialComplex,SimplicialComplex,Degree=>...)
-- compute the relative homology of two simplicial complexes
cohomology(ZZ,SimplicialMap,Degree=>...)
-- Compute the induced map on cohomology of a simplicial map.
complex(SimplicialComplex)
-- create the chain complex associated to a simplicial complex.
complex(SimplicialComplex,Labels=>...)
-- create the chain complex associated to a simplicial complex.
complex(SimplicialMap)
-- constructs the associated map between chain complexes
connectedComponents
-- find the connected components of an abstract simplicial complex
connectedComponents(SimplicialComplex)
-- find the connected components of an abstract simplicial complex
dim(SimplicialComplex)
-- find the dimension of an abstract simplicial complex
dual(SimplicialComplex)
-- make the Alexander dual of an abstract simplicial complex
dunceHatComplex
-- make a realization of the dunce hat with 8 vertices
dunceHatComplex(PolynomialRing)
-- make a realization of the dunce hat with 8 vertices
elementaryCollapse
-- construct the elementary collapse of a free face in a simplicial complex
elementaryCollapse(SimplicialComplex,RingElement)
-- construct the elementary collapse of a free face in a simplicial complex
faces(SimplicialComplex)
-- get the list of faces for an abstract simplicial complex
faces(ZZ,SimplicialComplex)
-- get the $i$-faces of an abstract simplicial complex
facets(SimplicialComplex)
-- get the list of maximal faces
Finding attributes and properties
-- information about accessing features of an abstract simplicial complex
flagfVector
-- compute the flag $f$-vector of an colored simplicial complex
flagfVector(List,SimplicialComplex)
-- compute a flag $f$-number of a colored simplicial complex
flagfVector(SimplicialComplex)
-- compute the flag $f$-vector of an colored simplicial complex
fVector(SimplicialComplex)
-- compute the f-vector of an abstract simplicial complex
grunbaumBallComplex
-- make a nonshellable 3-ball with 14 vertices and 29 facets
grunbaumBallComplex(PolynomialRing)
-- make a nonshellable 3-ball with 14 vertices and 29 facets
HH SimplicialComplex
-- compute the reduced homology of an abstract simplicial complex
HH SimplicialMap
-- Compute the induced map on homology of a simplicial map.
HH^ZZ SimplicialComplex
-- compute the reduced cohomology of an abstract simplicial complex
HH^ZZ SimplicialMap
-- Compute the induced map on cohomology of a simplicial map.
HH^ZZ(SimplicialComplex,Ring)
-- compute the reduced cohomology of an abstract simplicial complex
HH^ZZ(SimplicialComplex,SimplicialComplex)
-- compute the relative homology of two simplicial complexes
HH_ZZ SimplicialComplex
-- compute the reduced homology of an abstract simplicial complex
HH_ZZ SimplicialMap
-- Compute the induced map on homology of a simplicial map.
HH_ZZ(SimplicialComplex,Ring)
-- compute the reduced homology of an abstract simplicial complex
HH_ZZ(SimplicialComplex,SimplicialComplex)
-- compute the relative homology of two simplicial complexes
homology(Nothing,SimplicialComplex)
-- compute the reduced homology of an abstract simplicial complex
homology(Nothing,SimplicialComplex,Ring)
-- compute the reduced homology of an abstract simplicial complex
homology(Nothing,SimplicialComplex,SimplicialComplex)
-- compute the relative homology of two simplicial complexes
homology(Nothing,SimplicialMap)
-- Compute the induced map on homology of a simplicial map.
homology(SimplicialComplex,Ring)
-- compute the reduced homology of an abstract simplicial complex
homology(SimplicialComplex,SimplicialComplex)
-- compute the relative homology of two simplicial complexes
id _ SimplicialComplex
-- make the identity map from a SimplicialComplex to itself
ideal(SimplicialComplex)
-- get the Stanley–Reisner ideal
image(SimplicialMap)
-- construct the image of a simplicial map
inducedSubcomplex
-- make the induced simplicial complex on a subset of vertices
inducedSubcomplex(SimplicialComplex,List)
-- make the induced simplicial complex on a subset of vertices
isInjective(SimplicialMap)
-- checks if a simplicial map is injective
isProper
-- whether an abstract simplicial complex is properly colored
isProper(SimplicialComplex)
-- whether an abstract simplicial complex is properly colored
isPure(SimplicialComplex)
-- whether the facets are equidimensional
isSurjective(SimplicialMap)
-- checks if a simplicial map is surjective
isWellDefined(SimplicialComplex)
-- whether underlying data is uncontradictory
isWellDefined(SimplicialMap)
-- whether underlying data is uncontradictory
join two abstract simplicial complexes
-- make the join for two abstract simplicial complexes
kleinBottleComplex
-- make a minimal triangulation of the Klein bottle
kleinBottleComplex(PolynomialRing)
-- make a minimal triangulation of the Klein bottle
Labels
-- create the chain complex associated to a simplicial complex.
link
-- make the link of a face in an abstract simplicial complex
link(SimplicialComplex,RingElement)
-- make the link of a face in an abstract simplicial complex
lyubeznikResolution
-- create the Lyubeznik resolution of an ordered set of monomials.
lyubeznikResolution(...,MonomialOrder=>...)
-- create the Lyubeznik resolution of an ordered set of monomials.
lyubeznikResolution(List)
-- create the Lyubeznik resolution of an ordered set of monomials.
lyubeznikResolution(MonomialIdeal)
-- create the Lyubeznik resolution of an ordered set of monomials.
lyubeznikSimplicialComplex
-- create a simplicial complex supporting a Lyubeznik resolution of a monomial ideal
lyubeznikSimplicialComplex(...,MonomialOrder=>...)
-- create a simplicial complex supporting a Lyubeznik resolution of a monomial ideal
lyubeznikSimplicialComplex(List,Ring)
-- create a simplicial complex supporting a Lyubeznik resolution of a monomial ideal
lyubeznikSimplicialComplex(MonomialIdeal,Ring)
-- create a simplicial complex supporting a Lyubeznik resolution of a monomial ideal
Making an abstract simplicial complex
-- information about the basic constructors
map(SimplicialComplex,List)
-- create a simplicial map between simplicial complexes
map(SimplicialComplex,Matrix)
-- create a simplicial map between simplicial complexes
map(SimplicialComplex,RingMap)
-- create a simplicial map between simplicial complexes
map(SimplicialComplex,SimplicialComplex,List)
-- create a simplicial map between simplicial complexes
map(SimplicialComplex,SimplicialComplex,Matrix)
-- create a simplicial map between simplicial complexes
map(SimplicialComplex,SimplicialComplex,RingMap)
-- create a simplicial map between simplicial complexes
map(SimplicialMap)
-- the underlying ring map associated to a simplicial map
matrix(SimplicialMap)
-- get the underlying map of rings
monomialIdeal(SimplicialComplex)
-- get the Stanley–Reisner monomial ideal
net(SimplicialComplex)
-- make a symbolic representation of an abstract simplicial complex
net(SimplicialMap)
-- make a symbolic representation for a map of abstract simplicial complexes
nonPiecewiseLinearSphereComplex
-- make a non-piecewise-linear 5-sphere with 18 vertices
nonPiecewiseLinearSphereComplex(PolynomialRing)
-- make a non-piecewise-linear 5-sphere with 18 vertices
poincareSphereComplex
-- make a homology 3-sphere with 16 vertices
poincareSphereComplex(PolynomialRing)
-- make a homology 3-sphere with 16 vertices
prune(SimplicialComplex)
-- make a minimal presentation of an abstract simplicial complex
realProjectiveSpaceComplex
-- make a small triangulation of real projective space
realProjectiveSpaceComplex(ZZ,PolynomialRing)
-- make a small triangulation of real projective space
ring(SimplicialComplex)
-- get the polynomial ring of its Stanley–Reisner ideal
rudinBallComplex
-- make a nonshellable 3-ball with 14 vertices and 41 facets
rudinBallComplex(PolynomialRing)
-- make a nonshellable 3-ball with 14 vertices and 41 facets
scarfChainComplex
-- create the Scarf chain complex for a list of monomials.
scarfChainComplex(List)
-- create the Scarf chain complex for a list of monomials.
scarfChainComplex(MonomialIdeal)
-- create the Scarf chain complex for a list of monomials.
scarfSimplicialComplex
-- create the Scarf simplicial complex for a list of monomials
scarfSimplicialComplex(List,Ring)
-- create the Scarf simplicial complex for a list of monomials
scarfSimplicialComplex(MonomialIdeal,Ring)
-- create the Scarf simplicial complex for a list of monomials
simplexComplex
-- make the simplex as an abstract simplicial complex
simplexComplex(ZZ,PolynomialRing)
-- make the simplex as an abstract simplicial complex
SimplicialComplex
-- the class of all abstract simplicial complexes
simplicialComplex
-- make an abstract simplicial complex from a list of faces
SimplicialComplex * SimplicialComplex
-- make the join for two abstract simplicial complexes
simplicialComplex(Ideal)
-- make a simplicial complex from its Stanley–Reisner ideal
simplicialComplex(List)
-- make an abstract simplicial complex from a list of faces
simplicialComplex(Matrix)
-- make an abstract simplicial complex from a list of faces
simplicialComplex(MonomialIdeal)
-- make a simplicial complex from its Stanley–Reisner ideal
SimplicialComplexes
-- exploring abstract simplicial complexes within commutative algebra
SimplicialMap
-- the class of all maps between simplicial complexes
skeleton(ZZ,SimplicialComplex)
-- make a new simplicial complex generated by all faces of a bounded dimension
smallManifold
-- get a small manifold from the Frank Lutz database
smallManifold(ZZ,ZZ,ZZ,PolynomialRing)
-- get a small manifold from the Frank Lutz database
source(SimplicialMap)
-- get the source of the map
Stanley–Reisner ideal
-- get the Stanley–Reisner monomial ideal
star
-- make the star of a face
star(SimplicialComplex,RingElement)
-- make the star of a face
substitute(SimplicialComplex,PolynomialRing)
-- change the ring of a simplicial complex
target(SimplicialMap)
-- get the target of the map
taylorResolution
-- create the Taylor resolution of a monomial ideal
taylorResolution(List)
-- create the Taylor resolution of a monomial ideal
taylorResolution(MonomialIdeal)
-- create the Taylor resolution of a monomial ideal
vertices(SimplicialComplex)
-- get the list of the vertices for an abstract simplicial complex
wedge
-- make the wedge sum of two abstract simplicial complexes
wedge(SimplicialComplex,SimplicialComplex,RingElement,RingElement)
-- make the wedge sum of two abstract simplicial complexes
wedge(SimplicialComplex,SimplicialComplex,RingElement,RingElement,Variables=>...)
-- make the wedge sum of two abstract simplicial complexes
Working with associated chain complexes
-- information about the chain complexes and their homogenizations
Working with simplicial maps
-- information about simplicial maps and the induced operations
zieglerBallComplex
-- make a nonshellable 3-ball with 10 vertices and 21 facets
zieglerBallComplex(PolynomialRing)
-- make a nonshellable 3-ball with 10 vertices and 21 facets