The boundary of the 4-simplex is a simplicial 3-sphere with 5 vertices, 5 facets, and a minimal nonface that corresponds to the interior of the sphere.
i1 : S = ZZ[a..e];
|
i2 : Δ = simplicialComplex monomialIdeal (a*b*c*d*e)
o2 = simplicialComplex | bcde acde abde abce abcd |
o2 : SimplicialComplex
|
i3 : skeleton (-2, Δ)
o3 = simplicialComplex 0
o3 : SimplicialComplex
|
i4 : assert (skeleton (-2, Δ) === simplicialComplex monomialIdeal 1_S)
|
i5 : skeleton (-1, Δ)
o5 = simplicialComplex | 1 |
o5 : SimplicialComplex
|
i6 : assert (skeleton (-1, Δ) === simplicialComplex {1_S})
|
i7 : skeleton (0, Δ)
o7 = simplicialComplex | e d c b a |
o7 : SimplicialComplex
|
i8 : assert (skeleton (0, Δ) === simplicialComplex gens S)
|
i9 : skeleton (1, Δ)
o9 = simplicialComplex | de ce be ae cd bd ad bc ac ab |
o9 : SimplicialComplex
|
i10 : assert (skeleton (1, Δ) === simplicialComplex apply (subsets (gens S, 2), product))
|
i11 : skeleton (2, Δ)
o11 = simplicialComplex | cde bde ade bce ace abe bcd acd abd abc |
o11 : SimplicialComplex
|
i12 : assert (skeleton (2, Δ) === simplicialComplex apply (subsets (gens S, 3), product))
|
i13 : skeleton (3, Δ)
o13 = simplicialComplex | bcde acde abde abce abcd |
o13 : SimplicialComplex
|
i14 : assert (skeleton (3, Δ) === Δ)
|
i15 : fVector Δ
o15 = {1, 5, 10, 10, 5}
o15 : List
|
The abstract simplicial complex from Example 1.8 of Miller-Sturmfels' Combinatorial Commutative Algebra consists of a triangle (on vertices $a$, $b$, $c$), two edges (connecting $c$ to $d$ and $b$ to $d$), and an isolated vertex (namely $e$). It has six minimal nonfaces. Moreover, its 1-skeleton and 2-skeleton are not pure.
i16 : R = ZZ/101[a..f];
|
i17 : Γ = simplicialComplex {e, c*d, b*d, a*b*c}
o17 = simplicialComplex | e cd bd abc |
o17 : SimplicialComplex
|
i18 : skeleton (-7, Γ)
o18 = simplicialComplex 0
o18 : SimplicialComplex
|
i19 : assert (skeleton (-7, Γ) === simplicialComplex monomialIdeal 1_R)
|
i20 : skeleton (-1, Γ)
o20 = simplicialComplex | 1 |
o20 : SimplicialComplex
|
i21 : assert (skeleton (-1, Γ) === simplicialComplex {1_R})
|
i22 : skeleton (0, Γ)
o22 = simplicialComplex | e d c b a |
o22 : SimplicialComplex
|
i23 : assert (skeleton (0, Γ) === simplicialComplex {a, b, c, d, e})
|
i24 : skeleton (1, Γ)
o24 = simplicialComplex | e cd bd bc ac ab |
o24 : SimplicialComplex
|
i25 : assert (skeleton (1, Γ) === simplicialComplex {e, c*d, b*d, b*c, a*c, a*b})
|
i26 : skeleton (2, Γ)
o26 = simplicialComplex | e cd bd abc |
o26 : SimplicialComplex
|
i27 : assert (skeleton (2, Γ) === Γ)
|