The Poincaré homology sphere is a homology 3-sphere; it has the same homology groups as a 3-sphere. Following Theorem 5 in Anders Björner and Frank H. Lutz's "Simplicial manifolds, bistellar flips and a 16-vertex triangulation of the Poincaré homology 3-sphere", Experimental Mathematics 9 (2000) 275–289, this method returns a Poincaré homology sphere with 16 vertices.
i1 : S = ZZ/101[a..q];
|
i2 : Δ = poincareSphereComplex S;
|
i3 : matrix {facets Δ}
o3 = | mnop inop jmop ijop kmnp iknp jkmp ijkp lmno hlno gino ghno flmo ajmo
------------------------------------------------------------------------
afmo bhlo bflo ghko bhko dgko bdko eijo cejo acjo egio dego abfo cdeo
------------------------------------------------------------------------
acdo abdo clmn ckmn dhln cdln aikn cekn aekn ghjn dhjn bgjn dfjn bfjn
------------------------------------------------------------------------
bgin abin defn aefn abfn cden fglm cglm djkm bdkm bckm dhjm ahjm ehim
------------------------------------------------------------------------
dhim egim bgim bdim aehm efgm bcgm aefm ijkl fjkl aikl fgkl agkl eijl
------------------------------------------------------------------------
bfjl bejl ehil dhil adil behl acgl acdl dfjk aghk behk aehk dfgk bcek
------------------------------------------------------------------------
aghj bcgj acgj bcej abdi defg |
1 90
o3 : Matrix S <-- S
|
i4 : dim Δ
o4 = 3
|
i5 : fVector Δ
o5 = {1, 16, 106, 180, 90}
o5 : List
|
i6 : prune HH complex Δ
ZZ 1
o6 = (---)
101
3
o6 : Complex
|
i7 : assert(dim Δ === 3 and isPure Δ)
|
i8 : assert(fVector Δ === {1,16,106,180,90})
|