The map from the $i$-th homology of the source of $f$ to the $i$-th homology of the target of $f$. As an example, we map a circle into the torus in two ways, and we get two distinct maps in homology.
i1 : S = ZZ[x_0..x_6];
|
i2 : R = ZZ[y_0..y_2];
|
i3 : Torus = smallManifold(2,7,6,S);
|
i4 : Circle = simplicialComplex{R_0*R_1, R_0*R_2, R_1*R_2};
|
i5 : f1 = map(Torus,Circle,matrix{{S_3,S_6,S_5}});
o5 : SimplicialMap simplicialComplex | x_2x_5x_6 x_0x_5x_6 x_1x_4x_6 x_0x_4x_6 x_2x_3x_6 x_1x_3x_6 x_3x_4x_5 x_1x_4x_5 x_0x_3x_5 x_1x_2x_5 x_2x_3x_4 x_0x_2x_4 x_0x_1x_3 x_0x_1x_2 | <--- simplicialComplex | y_1y_2 y_0y_2 y_0y_1 |
|
i6 : f2 = map(Torus,Circle,matrix{{S_0,S_2,S_3}});
o6 : SimplicialMap simplicialComplex | x_2x_5x_6 x_0x_5x_6 x_1x_4x_6 x_0x_4x_6 x_2x_3x_6 x_1x_3x_6 x_3x_4x_5 x_1x_4x_5 x_0x_3x_5 x_1x_2x_5 x_2x_3x_4 x_0x_2x_4 x_0x_1x_3 x_0x_1x_2 | <--- simplicialComplex | y_1y_2 y_0y_2 y_0y_1 |
|
i7 : prune homology(1, f1)
o7 = | 1 |
| 0 |
2 1
o7 : Matrix ZZ <-- ZZ
|
i8 : prune homology(1, f2)
o8 = | 0 |
| 1 |
2 1
o8 : Matrix ZZ <-- ZZ
|