Macaulay2 » Documentation
Packages » SimplicialComplexes :: homology(SimplicialComplex,SimplicialComplex)
next | previous | forward | backward | up | index | toc

homology(SimplicialComplex,SimplicialComplex) -- compute the relative homology of two simplicial complexes

Synopsis

Description

This method computes the relative homology of a simplicial complex $\Delta$ contracted along a subcomplex $\Gamma$.

Contracting an edge of a hexagon will not change the homology.

i1 : S = ZZ[x_0..x_5];
i2 : Δ = simplicialComplex {x_0*x_1,x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_5,x_5*x_0}

o2 = simplicialComplex | x_4x_5 x_0x_5 x_3x_4 x_2x_3 x_1x_2 x_0x_1 |

o2 : SimplicialComplex
i3 : Γ = simplicialComplex {x_0*x_1}

o3 = simplicialComplex | x_0x_1 |

o3 : SimplicialComplex
i4 : prune homology Δ

       1
o4 = ZZ
      
     1

o4 : Complex
i5 : prune homology(Δ, Γ)

       1
o5 = ZZ
      
     1

o5 : Complex
i6 : assert(prune homology(Δ, Γ) == prune homology Δ)

Gluing two antipodal points on a sphere introduces a non-trivial loop.

i7 : S = ZZ[y_0..y_4];
i8 : Δ = simplicialComplex {y_0*y_1*y_3, y_0*y_2*y_3, y_1*y_2*y_3,
                            y_0*y_1*y_4, y_0*y_2*y_4, y_1*y_2*y_4}

o8 = simplicialComplex | y_1y_2y_4 y_0y_2y_4 y_0y_1y_4 y_1y_2y_3 y_0y_2y_3 y_0y_1y_3 |

o8 : SimplicialComplex
i9 : prune homology Δ

       1
o9 = ZZ
      
     2

o9 : Complex
i10 : Γ = simplicialComplex {y_3, y_4}

o10 = simplicialComplex | y_4 y_3 |

o10 : SimplicialComplex
i11 : prune homology(Δ, Γ)

        1       1
o11 = ZZ  <-- ZZ
               
      1       2

o11 : Complex

This method assumes that $\Gamma$ is a subcomplex of $\Delta$ and does not even check that the two abstract simplicial complexes are defined over the same ring.

Caveat

This method does not check if $\Gamma$ is contained in $\Delta$.

See also

Ways to use this method: