Macaulay2 » Documentation
Packages » SimplicialComplexes :: map(SimplicialComplex,SimplicialComplex,Matrix)
next | previous | forward | backward | up | index | toc

map(SimplicialComplex,SimplicialComplex,Matrix) -- create a simplicial map between simplicial complexes

Synopsis

Description

A simplicial map $f: \Delta \to \Gamma$ is a function that sends the vertices of $\Delta$ to vertices of $\Gamma$, with the added condition that if $\{ v_1, v_2,..,v_k \} \in \Delta$, then $\{ f(v_1), f(v_2), ..., f(v_n) \} \in \Gamma$. If no target is specified, it is assumed that the target is the simplicial complex whose faces are $f(F)$ for all faces $F \in \Delta$. As a first example, let's look at the identity map on a 3-simplex.

i1 : S = QQ[a,b,c,d];
i2 : Δ = simplexComplex(3,S);
i3 : f = map(Δ,Δ, id_S)

o3 = | a b c d |

o3 : SimplicialMap simplicialComplex | abcd | <--- simplicialComplex | abcd |
i4 : matrix f

o4 = | a b c d |

             1      4
o4 : Matrix S  <-- S
i5 : map f

o5 = map (S, S, {a, b, c, d})

o5 : RingMap S <-- S

Here is a slightly more interesting example.

i6 : R = QQ[s,t,u,v,w];
i7 : Γ = simplicialComplex{s*t*u,u*v*w};
i8 : g = map(Δ,Γ, {a,b,c,d,d})

o8 = | a b c d d |

o8 : SimplicialMap simplicialComplex | abcd | <--- simplicialComplex | uvw stu |
i9 : source g

o9 = simplicialComplex | uvw stu |

o9 : SimplicialComplex
i10 : target g

o10 = simplicialComplex | abcd |

o10 : SimplicialComplex
i11 : image g

o11 = simplicialComplex | cd abc |

o11 : SimplicialComplex

See also

Ways to use this method: