Returns the module in the \{i,j\} \ position in the spectral sequence page. (Using homological or lower indexing conventions.) The relationship $E_{i,j} = E^{-i,-j}$ holds.
i1 : A = QQ[x,y]
o1 = A
o1 : PolynomialRing
|
i2 : C = koszul vars A;
|
i3 : K = filteredComplex C;
|
i4 : E = spectralSequence K
o4 = E
o4 : SpectralSequence
|
i5 : E^0
+-----------------+-----------------------+------+
| | | 1 |
o5 = |image | 1 0 0 0 ||image {1} | 1 0 0 0 0 ||A |
| | {1} | 0 1 0 0 0 || |
|{0, 0} | |{2, 0}|
| |{1, 0} | |
+-----------------+-----------------------+------+
o5 : SpectralSequencePage
|
i6 : E^0 _{1,0}
o6 = image {1} | 1 0 0 0 0 |
{1} | 0 1 0 0 0 |
2
o6 : A-module, submodule of A
|
i7 : E_0 ^{-1,0}
o7 = image {1} | 1 0 0 0 0 |
{1} | 0 1 0 0 0 |
2
o7 : A-module, submodule of A
|