D = tensor(f,C)
Given a ring map R -> S and a chain complex over R, returns the tensor product of the given chain complex.
i1 : R = QQ[x];
i2 : M = R^1/(x^2);
i3 : S = R/(x^4);
i4 : C = res M 1 1 o4 = R <-- R <-- 0 0 1 2 o4 : ChainComplex
i5 : f = map(S,R,{1}); o5 : RingMap S <-- R
i6 : tensor(f,C) 1 1 o6 = S <-- S <-- 0 0 1 2 o6 : ChainComplex