Macaulay2
»
Documentation
Packages
»
VirtualResolutions
::
Index
next | previous | forward | backward | up |
index
|
toc
VirtualResolutions : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Attempt
-- limit number of attempts for randomCurveP1P2
curveFromP3toP1P2
-- creates the ideal of a curve in P^1xP^2 from the ideal of a curve in P^3
curveFromP3toP1P2(...,PreserveDegree=>...)
-- Determines if curve is disjoint from base loci
curveFromP3toP1P2(Ideal)
-- creates the ideal of a curve in P^1xP^2 from the ideal of a curve in P^3
GeneralElements
-- combines generators of same degree into a general linear combination
idealSheafGens
-- creates a list of subsets of the minimal generators that generate a given ideal up to saturation
idealSheafGens(...,GeneralElements=>...)
-- combines generators of same degree into a general linear combination
idealSheafGens(ZZ,Ideal,Ideal)
-- creates a list of subsets of the minimal generators that generate a given ideal up to saturation
idealSheafGens(ZZ,Ideal,NormalToricVariety)
-- creates a list of subsets of the minimal generators that generate a given ideal up to saturation
isVirtual
-- checks whether a chain complex is a virtual resolution
isVirtual(...,Strategy=>...)
-- changes strategy from computing homology to computing minors of boundary maps
isVirtual(Ideal,ChainComplex)
-- checks whether a chain complex is a virtual resolution
isVirtual(NormalToricVariety,ChainComplex)
-- checks whether a chain complex is a virtual resolution
LowerLimit
-- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
multigradedRegularity
-- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
multigradedRegularity(...,LowerLimit=>...)
-- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
multigradedRegularity(...,Strategy=>...)
-- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
multigradedRegularity(...,UpperLimit=>...)
-- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
multigradedRegularity(NormalToricVariety,Ideal)
-- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
multigradedRegularity(NormalToricVariety,Module)
-- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
multigradedRegularity(Ring,Ideal)
-- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
multigradedRegularity(Ring,Module)
-- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
PreserveDegree
-- Determines if curve is disjoint from base loci
randomCurveP1P2
-- creates the ideal of a random curve in P^1xP^2
randomCurveP1P2(...,Attempt=>...)
-- limit number of attempts for randomCurveP1P2
randomCurveP1P2(ZZ,ZZ)
-- creates the ideal of a random curve in P^1xP^2
randomCurveP1P2(ZZ,ZZ,Ring)
-- creates the ideal of a random curve in P^1xP^2
randomMonomialCurve
-- creates the ideal of a random monomial curve of degree (d,e) in P^1xP^2
randomMonomialCurve(ZZ,ZZ)
-- creates the ideal of a random monomial curve of degree (d,e) in P^1xP^2
randomMonomialCurve(ZZ,ZZ,Ring)
-- creates the ideal of a random monomial curve of degree (d,e) in P^1xP^2
randomRationalCurve
-- creates the ideal of a random rational curve of degree (d,e) in P^1xP^2
randomRationalCurve(ZZ,ZZ)
-- creates the ideal of a random rational curve of degree (d,e) in P^1xP^2
randomRationalCurve(ZZ,ZZ,Ring)
-- creates the ideal of a random rational curve of degree (d,e) in P^1xP^2
resolveViaFatPoint
-- returns a virtual resolution of a zero-dimensional scheme
resolveViaFatPoint(Ideal,Ideal,List)
-- returns a virtual resolution of a zero-dimensional scheme
UpperLimit
-- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
virtualOfPair
-- creates a virtual resolution from a free resolution by keeping only summands of specified degrees
virtualOfPair(...,LengthLimit=>...)
-- stop when the virtual resolution reaches this length
virtualOfPair(ChainComplex,List)
-- creates a virtual resolution from a free resolution by keeping only summands of specified degrees
virtualOfPair(Ideal,List)
-- creates a virtual resolution from a free resolution by keeping only summands of specified degrees
virtualOfPair(Module,List)
-- creates a virtual resolution from a free resolution by keeping only summands of specified degrees
VirtualResolutions
-- a package for computing virtual resolutions