The characteristic ideal of M is the annihilator of gr(M) under a good filtration with respect to the order filtration. If $D$ is the Weyl algebra over ℂ with generators $x_1,\dots,x_n$ and $\partial_1,\dots,\partial_n$, then the order filtration corresponds to the weight vector $(0,...,0,1,...,1)$. The characteristic ideal lives in the associated graded ring of $D$ with respect to the order filtration, and this is a commutative polynomial ring ℂ$[x_1,\dots,x_n,\xi_1,\dots,\xi_n]$. Here the $\xi_i$ is the principal symbol of $\partial_i$, that is, the image of $\partial_i$ in the associated graded ring. The zero locus of the characteristic ideal is equal to the characteristic variety of D/I which is an invariant of a Dmodule.
The algorithm to compute the characteristic ideal consists of computing the initial ideal of I with respect to the weight vector $(0,...,0,1...,1)$. More details can be found in [SST, Section 1.4].



The object characteristicIdeal is a method function.