Macaulay2
»
Documentation
Packages
»
AbstractSimplicialComplexes
::
Table of Contents
next | previous | forward | backward | up |
index
|
toc
AbstractSimplicialComplexes : Table of Contents
AbstractSimplicialComplexes
-- a package for working with abstract simplicial complexes
AbstractSimplicialComplex
-- The type of all abstract simplicial complexes
abstractSimplicialComplex
-- The abstractSimplicialComplex that is determined by an abstract simplicial complex
AbstractSimplicialComplex == AbstractSimplicialComplex
-- Decide if two simplicial complexes are equal
AbstractSimplicialComplex _ ZZ
-- The k faces of a simplicial complex
abstractSimplicialComplexFacets
-- The facets of a simplicial complex
ambientAbstractSimplicialComplex
-- The ambient simplex
ambientAbstractSimplicialComplexSize
-- The ambient simplex size
Calculations with random simplicial complexes
-- Homological calculations on random simplicial complexes
describe(AbstractSimplicialComplex)
-- real description
dim(AbstractSimplicialComplex)
-- The dimension of a simplicial complex
How to make abstract simplicial complexes
-- Using the type AbstractSimplicialComplexs to represent abstract simplicial complexes
How to make reduced and non-reduced simplicial chain complexes
-- Simplicial homological constructors
How to make subsimplical complexes and induced simplicial chain complex maps
-- Induced simplicial chain complex maps via subsimplicial complexes
inducedReducedSimplicialChainComplexMap
-- Induced maps that arise via inclusions of abstract simplicial complexes
inducedSimplicialChainComplexMap
-- Induced maps that arise via inclusions of abstract simplicial complexes
new AbstractSimplicialComplex
randomAbstractSimplicialComplex
-- Create a random simplicial set
randomSubSimplicialComplex
-- Create a random sub-simplicial complex
reducedSimplicialChainComplex
-- The reduced homological chain complex that is determined by an abstract simplicial complex
simplicialChainComplex
-- The non-reduced homological chain complex that is determined by an abstract simplicial complex