L=lieAlgebra(liegens)
A generator may be of class Symbol or IndexedVariable. The same name for a generator can be used in several Lie algebras and also as name for a variable in a polynomial ring. If a symbol $a$ has been used as name for some output, then you must write a = symbol a to be able to use the symbol as a generator instead. Relations are introduced by the operator /, see LieAlgebra / List. It is also possible to define a Lie algebra modulo an ideal. See LieAlgebra / LieIdeal. A differential Lie algebra is defined by giving the value of the differential on the generators, see differentialLieAlgebra. If relations are introduced as a list, then the program adds relations to make the ideal of relations invariant under the differential. These nonnormalized relations are obtained using ideal(LieAlgebra) and can also be seen using describe(LieAlgebra), see L2 below. The zero Lie algebra (over QQ) is defined as lieAlgebra\{\}.










The object lieAlgebra is a method function with options.