next | previous | forward | backward | up | index | toc

# solverMLE(...,Solver=>...) -- choose numerical solver

## Synopsis

• Usage:
solverMLE(G,U,Solver=>P)
• Inputs:
• P, , name of the corresponding package

## Description

This option allows to choose which numerical solver to use to estimate the critical points. There are two options: "EigenSolver" or "NAG4M2" (Numerical Algebraic Geometry for Macaulay2).

The default and strongly recommended option is "EigenSolver", in which case the function zeroDimSolve is used. If "NAG4M2" is chosen, then solveSystem is used.

 i1 : G=mixedGraph(graph{{a,b}},digraph{{a,d}},bigraph{{c,d}}) o1 = MixedGraph{Bigraph => Bigraph{c => {d}}} d => {c} Digraph => Digraph{a => {d}} d => {} Graph => Graph{a => {b}} b => {a} o1 : MixedGraph i2 : U=matrix{{1, 2, 5, 1}, {5, 3, 2, 1}, {4, 3, 5, 10}, {2, 5,1, 3}}; 4 4 o2 : Matrix ZZ <-- ZZ i3 : solverMLE (G,U,Solver=>"EigenSolver") o3 = (-8.4691, | 2.5 0 0 2.26215 |, 1) | 0 1.1875 0 0 | | 0 0 3.1875 3.26493 | | 2.26215 0 3.26493 14.6143 | o3 : Sequence i4 : solverMLE (G,U,Solver=>"NAG4M2") o4 = (-8.4691, | 2.5 0 0 2.26215 |, 1) | 0 1.1875 0 0 | | 0 0 3.1875 3.26493 | | 2.26215 0 3.26493 14.6143 | o4 : Sequence

## Further information

• Default value: EigenSolver
• Function: solverMLE -- Maximum likelihood estimate of a loopless mixed graph
• Option key: Solver -- optional input to choose numerical solver