This is the forgetful functor from the category of chain complexes to the category of modules. A chain complex $C$ is sent to the direct sum $\bigoplus_i C_i$ of its terms. A map of chain complexes $f \colon C \to D$ is sent to the direct sum $\bigoplus_i f_i \colon \bigoplus_i C_i \to \bigoplus_i D_i$.
i5 : f = randomComplexMap(C, C, InternalDegree => 1, Cycle => true)
1 1
o5 = 0 : S <------------------- S : 0
| -5a-27b-40c |
3 3
1 : S <---------------------------------------------- S : 1
{1} | -5a-46b+42c -7b+24c 29b+9c |
{1} | 19a-8c 2a-27b-14c -29a-30c |
{1} | 19a+8b -24a-26b -14a+3b-40c |
3 3
2 : S <---------------------------------------------- S : 2
{2} | 2a-46b-30c -29a-10c -29b+22c |
{2} | -24a-29b -14a-36b+42c -38b+24c |
{2} | -16a-8b 39a-8c 24a+3b-14c |
1 1
3 : S <----------------------- S : 3
{3} | 24a-36b-30c |
o5 : ComplexMap
|
i6 : g = sum f
o6 = {0} | -5a-27b-40c 0 0 0 0
{1} | 0 -5a-46b+42c -7b+24c 29b+9c 0
{1} | 0 19a-8c 2a-27b-14c -29a-30c 0
{1} | 0 19a+8b -24a-26b -14a+3b-40c 0
{2} | 0 0 0 0 2a-46b-30c
{2} | 0 0 0 0 -24a-29b
{2} | 0 0 0 0 -16a-8b
{3} | 0 0 0 0 0
------------------------------------------------------------------------
0 0 0 |
0 0 0 |
0 0 0 |
0 0 0 |
-29a-10c -29b+22c 0 |
-14a-36b+42c -38b+24c 0 |
39a-8c 24a+3b-14c 0 |
0 0 24a-36b-30c |
8 8
o6 : Matrix S <-- S
|
i7 : assert(g^2 === sum f^2)
|
i8 : assert(target g === sum target f)
|
i9 : assert(source g === sum source f)
|
i10 : h = sum dd^C
o10 = {0} | 0 a b c 0 0 0 0 |
{1} | 0 0 0 0 -b -c 0 0 |
{1} | 0 0 0 0 a 0 -c 0 |
{1} | 0 0 0 0 0 a b 0 |
{2} | 0 0 0 0 0 0 0 c |
{2} | 0 0 0 0 0 0 0 -b |
{2} | 0 0 0 0 0 0 0 a |
{3} | 0 0 0 0 0 0 0 0 |
8 8
o10 : Matrix S <-- S
|
i11 : assert(h^2 == 0)
|