Macaulay2 » Documentation
Packages » SchurRings :: schurResolution(...,DegreeLimit=>...)
next | previous | forward | backward | up | index | toc

schurResolution(...,DegreeLimit=>...) -- Specifies the maximal degree of syzygies to be computed

Description

This is an optional argument for the schurResolution routine. It specifies an upper bound for the degrees of the generators of the syzygy modules in the equivariant resolution of an equivariant module M to be computed by the routine. If a DegreeLimit is not specified, then it is assumed to be equal to the maximal degree in which the module M is specified as a representation.

i1 : A = schurRing(a,3,GroupActing => "Sn");
i2 : B = schurRing(A,b,2);
i3 : rep = (a_3 + a_{2,1}) * b_1

o3 = (a  + a   )b
       3    2,1  1

o3 : B
i4 : d = dim rep

o4 = 6
i5 : M = {a_3 * 1_B};
i6 : sR = schurResolution(rep,M,DegreeLimit => d)

o6 = {{(0, a b  )}, {(1, (a  + a   )b )}, {(2, (a    + a     )b  + (2a  +
            3 ()           3    2,1  1           2,1    1,1,1  2      3  
     ------------------------------------------------------------------------
     2a   )b   )}, {(3, a     b  + (a  + 3a    + a     )b   )}, {(4, (a    +
       2,1  1,1          1,1,1 3     3     2,1    1,1,1  2,1           2,1  
     ------------------------------------------------------------------------
     a     )b    + (2a  + 2a   )b   )}, {(5, (a  + a   )b   )}, {(6,
      1,1,1  3,1      3     2,1  2,2           3    2,1  3,2        
     ------------------------------------------------------------------------
     a b   )}}
      3 3,3

o6 : List

See also

Functions with optional argument named DegreeLimit:

  • compose(Module,Module,Module,DegreeLimit=>...) -- see compose -- composition as a pairing on Hom-modules
  • End(...,DegreeLimit=>...) -- see End -- module of endomorphisms
  • gb(...,DegreeLimit=>...) -- see gb -- compute a Gröbner basis
  • Hom(...,DegreeLimit=>...) -- see Hom -- module of homomorphisms
  • homomorphism'(...,DegreeLimit=>...) -- see homomorphism' -- get the element of Hom from a homomorphism
  • minimalBetti(...,DegreeLimit=>...) -- see minimalBetti -- minimal betti numbers of (the minimal free resolution of) a homogeneous ideal or module
  • pushForward(...,DegreeLimit=>...) -- see pushForward(RingMap,Module) -- compute the pushforward of a module along a ring map
  • quotient(...,DegreeLimit=>...) (missing documentation)
  • saturate(...,DegreeLimit=>...) (missing documentation)
  • schurResolution(...,DegreeLimit=>...) -- Specifies the maximal degree of syzygies to be computed
  • syz(...,DegreeLimit=>...) -- see syz(Matrix) -- compute the syzygy matrix

Further information

  • Default value: 0
  • Function: schurResolution -- Compute an ``approximate'' equivariant resolution of a module.
  • Option key: DegreeLimit -- an optional argument

The source of this document is in SchurRings.m2:2473:0.