i2 : A0 = arrangement "(9_3)_2"
o2 = {x , x , x , x + x , x + x , x + 3x , x + 2x + x , x + 2x + 3x , 4x + 6x + 6x }
1 2 3 1 2 2 3 1 3 1 2 3 1 2 3 1 2 3
o2 : Hyperplane Arrangement
|
i3 : ring A0
o3 = QQ[x ..x ]
1 3
o3 : PolynomialRing
|
i4 : A1 = arrangement("bracelet", ZZ)
o4 = {x , x , x , x + x , x + x , x + x , x + x + x , x + x + x , x + x + x }
1 2 3 1 4 2 4 3 4 1 2 4 1 3 4 2 3 4
o4 : Hyperplane Arrangement
|
i5 : ring A1
o5 = ZZ[x ..x ]
1 4
o5 : PolynomialRing
|
i6 : A2 = arrangement("braid", ZZ/101)
o6 = {x , x , x , x - x , x - x , x - x }
1 2 3 1 2 1 3 2 3
o6 : Hyperplane Arrangement
|
i7 : ring A2
ZZ
o7 = ---[x ..x ]
101 1 3
o7 : PolynomialRing
|
i8 : A3 = arrangement("Desargues", ZZ[vars(0..2)])
o8 = {a, b, c, a + b + c, 2a - 3c, 2a + b - 3c, - 3a - 2b + 2c, a + 2b + c, 3a + 2b + c, 2a + b}
o8 : Hyperplane Arrangement
|
i9 : ring A3
o9 = ZZ[a..c]
o9 : PolynomialRing
|
i10 : A4 = arrangement("nonFano", QQ[a..c])
o10 = {a, b, c, b - c, a - c, a - b, a + b - c}
o10 : Hyperplane Arrangement
|
i11 : ring A4
o11 = QQ[a..c]
o11 : PolynomialRing
|
i12 : A5 = arrangement("notTame", ZZ/32003[w,x,y,z])
o12 = {w, x, y, z, w + x, w + y, w + z, x + y, x + z, y + z, w + x + y, w + x + z, w + y + z, x + y + z, w + x + y + z}
o12 : Hyperplane Arrangement
|
i13 : ring A5
ZZ
o13 = -----[w..z]
32003
o13 : PolynomialRing
|
i14 : A6 = arrangement "MacLane"
o14 = {x , x , x , x - x , x - x , x - 6420x , x - 6420x - x , x - 6420x + 6419x }
1 2 3 1 2 1 3 2 3 1 2 3 1 2 3
o14 : Hyperplane Arrangement
|
i15 : ring A6
ZZ
o15 = -----[x ..x ]
31627 1 3
o15 : PolynomialRing
|
i16 : A7 = arrangement("Hessian", ZZ/31627[a,b,c])
o16 = {a, b, c, a + b + c, a + b + 6419c, a + b - 6420c, a + 6419b + c, a + 6419b + 6419c, a + 6419b - 6420c, a - 6420b + c, a - 6420b + 6419c, a - 6420b - 6420c}
o16 : Hyperplane Arrangement
|
i17 : ring A7
ZZ
o17 = -----[a..c]
31627
o17 : PolynomialRing
|
The following two examples have the property that the six triple points lie on a conic in the one arrangement, but not in the other. The difference is not reflected in the matroid. However, Hal Schenck's and Ştefan O. Tohǎneanu's paper "The Orlik-Terao algebra and 2-formality" Mathematical Research Letters 16 (2009) 171-182 arXiv:0901.0253 observes a difference between their respective Orlik-Terao algebras.
i19 : Z1 = arrangement "Ziegler1"
o19 = {x , x , x , x + x + x , 2x + x + x , 2x + 3x + x , 2x + 3x + 4x , 3x + 5x , 3x + 4x + 5x }
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 3 1 2 3
o19 : Hyperplane Arrangement
|
i20 : Z2 = arrangement "Ziegler2"
o20 = {x , x , x , x + x + x , 2x + x + x , 2x + 3x + x , 2x + 3x + 4x , x + 3x , x + 2x + 3x }
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 3 1 2 3
o20 : Hyperplane Arrangement
|
i21 : assert(matroid Z1 == matroid Z2) -- same underlying matroid
|
i22 : I1 = orlikTerao Z1;
o22 : Ideal of QQ[y ..y ]
1 9
|
i23 : I2 = orlikTerao Z2;
o23 : Ideal of QQ[y ..y ]
1 9
|
i24 : assert(hilbertPolynomial I1 == hilbertPolynomial I2) -- same Hilbert polynomial
|
i25 : hilbertPolynomial ideal super basis(2,I1)
o25 = 240*P - 192*P + 64*P
0 1 2
o25 : ProjectiveHilbertPolynomial
|
i26 : hilbertPolynomial ideal super basis(2,I2) -- but not (graded) isomorphic
o26 = - 5*P + 24*P - 38*P + 20*P
0 1 2 3
o26 : ProjectiveHilbertPolynomial
|