Macaulay2
»
Documentation
Packages
»
HyperplaneArrangements
::
Table of Contents
next | previous | forward | backward | up |
index
|
toc
HyperplaneArrangements : Table of Contents
HyperplaneArrangements
-- manipulating hyperplane arrangements
Arrangement
-- the class of all hyperplane arrangements
Arrangement ** Ring
-- change the coefficient ring of an arrangement
Arrangement == Arrangement
-- whether two hyperplane arrangements are equal
arrangement(Flat)
-- get the hyperplane arrangement to which a flat belongs
arrangement(List,Ring)
-- make a hyperplane arrangement
arrangement(Matrix,Ring)
-- make a hyperplane arrangement
arrangement(String,Ring)
-- access a database of classic hyperplane arrangements
arrangementSum(Arrangement,Arrangement)
-- make the direct sum of two arrangements
CentralArrangement
-- the class of all central hyperplane arrangements
circuits(CentralArrangement)
-- list the circuits of an arrangement
closure(Arrangement,List)
-- closure operation in the intersection lattice
coefficients(Arrangement)
-- make a matrix from the coefficients of the defining equations
compress(Arrangement)
-- extract nonzero equations
cone(Arrangement,RingElement)
-- creates an associated central hyperplane arrangement
deCone(CentralArrangement,RingElement)
-- produce an affine arrangement from a central one
deletion(Arrangement,RingElement)
-- deletion of a subset of an arrangement
der(CentralArrangement,List)
-- compute the module of logarithmic derivations
dual(CentralArrangement,Ring)
-- the Gale dual of an arrangement
EPY(Arrangement,PolynomialRing)
-- compute the Eisenbud-Popescu-Yuzvinsky module of an arrangement
euler(CentralArrangement)
-- compute the Euler characteristic of the projective complement
eulerRestriction(CentralArrangement,List,ZZ)
-- form the Euler restriction of a central multiarrangement
Flat
-- intersection of hyperplanes
Flat == Flat
-- whether two flats are equal
flat(Arrangement,List)
-- make a flat from a list of indices
flats(ZZ,Arrangement)
-- list the flats of an arrangement of a given rank
genericArrangement(ZZ,ZZ,Ring)
-- realize the uniform matroid using points on the monomial curve
graphic(List,List,PolynomialRing)
-- make a graphic arrangement
hyperplanes(Arrangement)
-- the defining linear forms of an arrangement
isCentral(Arrangement)
-- test to see if a hyperplane arrangement is central
isDecomposable(CentralArrangement,Ring)
-- whether a hyperplane arrangement decomposable in the sense of Papadima-Suciu
logCanonicalThreshold(CentralArrangement)
-- compute the log-canonical threshold of an arrangement
makeEssential(CentralArrangement)
-- make an essential arrangement out of an arbitrary one
matrix(Arrangement)
-- make a matrix from the defining equations
matroid(CentralArrangement)
-- get the matroid of a central arrangement
meet(Flat,Flat)
-- compute the meet operation in the intersection lattice
multiplierIdeal(QQ,CentralArrangement,List)
-- compute a multiplier ideal
orlikSolomon(Arrangement,PolynomialRing)
-- compute the defining ideal for the Orlik-Solomon algebra
orlikTerao(CentralArrangement,PolynomialRing)
-- compute the defining ideal for the Orlik-Terao algebra
poincare(Arrangement)
-- compute the Poincaré polynomial of an arrangement
prune(Arrangement)
-- makes a new hyperplane arrangement in a polynomial ring
randomArrangement(ZZ,PolynomialRing,ZZ)
-- generate an arrangement at random
rank(CentralArrangement)
-- compute the rank of a central hyperplane arrangement
rank(Flat)
-- compute the rank of a flat
restriction(Arrangement,Ideal)
-- construct the restriction a hyperplane arrangement to a subspace
ring(Arrangement)
-- get the underlying ring of a hyperplane arrangement
subArrangement(Arrangement,Flat)
-- create the hyperplane arrangement containing a flat
substitute(Arrangement,RingMap)
-- change the ring of an arrangement
toList(Flat)
-- the indices of a flat
trim(Arrangement)
-- make a simple hyperplane arrangement
typeA(ZZ,Ring)
-- make the hyperplane arrangement defined by a type $A_n$ root system
typeB(ZZ,Ring)
-- make the hyperplane arrangement defined by a type $B_n$ root system
typeD(ZZ,Ring)
-- make the hyperplane arrangement defined by a type $D_n$ root system
vee(Flat,Flat)
-- compute the vee operation in the intersection lattice