Macaulay2
»
Documentation
Packages
»
HyperplaneArrangements
::
Index
next | previous | forward | backward | up |
index
|
toc
HyperplaneArrangements : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Arrangement
-- the class of all hyperplane arrangements
arrangement
-- make a hyperplane arrangement
Arrangement ** Ring
-- change the coefficient ring of an arrangement
Arrangement ** RingMap
-- change the ring of an arrangement
Arrangement ++ Arrangement
-- make the direct sum of two arrangements
Arrangement == Arrangement
-- whether two hyperplane arrangements are equal
Arrangement ^ Flat
-- construct the restriction a hyperplane arrangement to a subspace
Arrangement _ Flat
-- create the hyperplane arrangement containing a flat
arrangement(Flat)
-- get the hyperplane arrangement to which a flat belongs
arrangement(List)
-- make a hyperplane arrangement
arrangement(List,Ring)
-- make a hyperplane arrangement
arrangement(Matrix)
-- make a hyperplane arrangement
arrangement(Matrix,Ring)
-- make a hyperplane arrangement
arrangement(RingElement)
-- make a hyperplane arrangement
arrangement(String)
-- access a database of classic hyperplane arrangements
arrangement(String,PolynomialRing)
-- access a database of classic hyperplane arrangements
arrangement(String,Ring)
-- access a database of classic hyperplane arrangements
arrangementLibrary
-- access a database of classic hyperplane arrangements
arrangementSum
-- make the direct sum of two arrangements
arrangementSum(Arrangement,Arrangement)
-- make the direct sum of two arrangements
CentralArrangement
-- the class of all central hyperplane arrangements
circuits
-- list the circuits of an arrangement
circuits(CentralArrangement)
-- list the circuits of an arrangement
closure
-- closure operation in the intersection lattice
closure(Arrangement,Ideal)
-- closure operation in the intersection lattice
closure(Arrangement,List)
-- closure operation in the intersection lattice
coefficients(Arrangement)
-- make a matrix from the coefficients of the defining equations
compress(Arrangement)
-- extract nonzero equations
cone(Arrangement,RingElement)
-- creates an associated central hyperplane arrangement
cone(Arrangement,Symbol)
-- creates an associated central hyperplane arrangement
deCone
-- produce an affine arrangement from a central one
deCone(CentralArrangement,RingElement)
-- produce an affine arrangement from a central one
deCone(CentralArrangement,ZZ)
-- produce an affine arrangement from a central one
dehomogenization
-- produce an affine arrangement from a central one
deletion
-- deletion of a subset of an arrangement
deletion(Arrangement,List)
-- deletion of a subset of an arrangement
deletion(Arrangement,RingElement)
-- deletion of a subset of an arrangement
deletion(Arrangement,Set)
-- deletion of a subset of an arrangement
deletion(Arrangement,ZZ)
-- deletion of a subset of an arrangement
der
-- compute the module of logarithmic derivations
der(...,Strategy=>...)
-- compute the module of logarithmic derivations
der(CentralArrangement)
-- compute the module of logarithmic derivations
der(CentralArrangement,List)
-- compute the module of logarithmic derivations
dual(CentralArrangement)
-- the Gale dual of an arrangement
dual(CentralArrangement,Ring)
-- the Gale dual of an arrangement
EPY
-- compute the Eisenbud-Popescu-Yuzvinsky module of an arrangement
EPY(Arrangement)
-- compute the Eisenbud-Popescu-Yuzvinsky module of an arrangement
EPY(Arrangement,PolynomialRing)
-- compute the Eisenbud-Popescu-Yuzvinsky module of an arrangement
EPY(Ideal)
-- compute the Eisenbud-Popescu-Yuzvinsky module of an arrangement
EPY(Ideal,PolynomialRing)
-- compute the Eisenbud-Popescu-Yuzvinsky module of an arrangement
euler(CentralArrangement)
-- compute the Euler characteristic of the projective complement
euler(Flat)
-- compute the Euler characteristic of the projective complement
eulerRestriction
-- form the Euler restriction of a central multiarrangement
eulerRestriction(CentralArrangement,List,ZZ)
-- form the Euler restriction of a central multiarrangement
Flat
-- intersection of hyperplanes
flat
-- make a flat from a list of indices
Flat == Flat
-- whether two flats are equal
Flat ^ Flat
-- compute the meet operation in the intersection lattice
Flat | Flat
-- compute the vee operation in the intersection lattice
flat(...,Validate=>...)
-- make a flat from a list of indices
flat(Arrangement,List)
-- make a flat from a list of indices
flats
-- list the flats of an arrangement of a given rank
flats(Arrangement)
-- list the flats of an arrangement of a given rank
flats(ZZ,Arrangement)
-- list the flats of an arrangement of a given rank
flats(ZZ,CentralArrangement)
-- list the flats of an arrangement of a given rank
genericArrangement
-- realize the uniform matroid using points on the monomial curve
genericArrangement(ZZ,ZZ)
-- realize the uniform matroid using points on the monomial curve
genericArrangement(ZZ,ZZ,Ring)
-- realize the uniform matroid using points on the monomial curve
graphic
-- make a graphic arrangement
graphic(List)
-- make a graphic arrangement
graphic(List,List)
-- make a graphic arrangement
graphic(List,List,PolynomialRing)
-- make a graphic arrangement
graphic(List,List,Ring)
-- make a graphic arrangement
graphic(List,PolynomialRing)
-- make a graphic arrangement
graphic(List,Ring)
-- make a graphic arrangement
HyperplaneArrangements
-- manipulating hyperplane arrangements
hyperplanes
-- the defining linear forms of an arrangement
hyperplanes(Arrangement)
-- the defining linear forms of an arrangement
isCentral
-- test to see if a hyperplane arrangement is central
isCentral(Arrangement)
-- test to see if a hyperplane arrangement is central
isDecomposable
-- whether a hyperplane arrangement decomposable in the sense of Papadima-Suciu
isDecomposable(CentralArrangement)
-- whether a hyperplane arrangement decomposable in the sense of Papadima-Suciu
isDecomposable(CentralArrangement,Ring)
-- whether a hyperplane arrangement decomposable in the sense of Papadima-Suciu
lct
-- compute the log-canonical threshold of an arrangement
lct(CentralArrangement)
-- compute the log-canonical threshold of an arrangement
logCanonicalThreshold
-- compute the log-canonical threshold of an arrangement
logCanonicalThreshold(CentralArrangement)
-- compute the log-canonical threshold of an arrangement
make loopless
-- extract nonzero equations
make simple
-- make a simple hyperplane arrangement
makeEssential
-- make an essential arrangement out of an arbitrary one
makeEssential(CentralArrangement)
-- make an essential arrangement out of an arbitrary one
matrix(Arrangement)
-- make a matrix from the defining equations
matroid(CentralArrangement)
-- get the matroid of a central arrangement
meet
-- compute the meet operation in the intersection lattice
meet(Flat,Flat)
-- compute the meet operation in the intersection lattice
multIdeal
-- compute a multiplier ideal
multIdeal(QQ,CentralArrangement)
-- compute a multiplier ideal
multIdeal(QQ,CentralArrangement,List)
-- compute a multiplier ideal
multIdeal(ZZ,CentralArrangement)
-- compute a multiplier ideal
multIdeal(ZZ,CentralArrangement,List)
-- compute a multiplier ideal
multiplierIdeal
-- compute a multiplier ideal
multiplierIdeal(QQ,CentralArrangement)
-- compute a multiplier ideal
multiplierIdeal(QQ,CentralArrangement,List)
-- compute a multiplier ideal
multiplierIdeal(ZZ,CentralArrangement)
-- compute a multiplier ideal
multiplierIdeal(ZZ,CentralArrangement,List)
-- compute a multiplier ideal
orlikSolomon
-- compute the defining ideal for the Orlik-Solomon algebra
orlikSolomon(...,HypAtInfinity=>...)
-- compute the defining ideal for the Orlik-Solomon algebra
orlikSolomon(...,Projective=>...)
-- compute the defining ideal for the Orlik-Solomon algebra
orlikSolomon(...,Strategy=>...)
-- compute the defining ideal for the Orlik-Solomon algebra
orlikSolomon(Arrangement)
-- compute the defining ideal for the Orlik-Solomon algebra
orlikSolomon(Arrangement,PolynomialRing)
-- compute the defining ideal for the Orlik-Solomon algebra
orlikSolomon(Arrangement,Ring)
-- compute the defining ideal for the Orlik-Solomon algebra
orlikSolomon(Arrangement,Symbol)
-- compute the defining ideal for the Orlik-Solomon algebra
orlikSolomon(CentralArrangement,PolynomialRing)
-- compute the defining ideal for the Orlik-Solomon algebra
orlikTerao
-- compute the defining ideal for the Orlik-Terao algebra
orlikTerao(...,NaiveAlgorithm=>...)
-- compute the defining ideal for the Orlik-Terao algebra
orlikTerao(CentralArrangement)
-- compute the defining ideal for the Orlik-Terao algebra
orlikTerao(CentralArrangement,PolynomialRing)
-- compute the defining ideal for the Orlik-Terao algebra
orlikTerao(CentralArrangement,Symbol)
-- compute the defining ideal for the Orlik-Terao algebra
poincare
-- compute the Poincaré polynomial of an arrangement
poincare(Arrangement)
-- compute the Poincaré polynomial of an arrangement
poincare(CentralArrangement)
-- compute the Poincaré polynomial of an arrangement
Popescu
-- compute the defining ideal for the Orlik-Solomon algebra
prune(Arrangement)
-- makes a new hyperplane arrangement in a polynomial ring
randomArrangement
-- generate an arrangement at random
randomArrangement(...,Validate=>...)
-- generate an arrangement at random
randomArrangement(ZZ,PolynomialRing,ZZ)
-- generate an arrangement at random
randomArrangement(ZZ,ZZ,ZZ)
-- generate an arrangement at random
rank(CentralArrangement)
-- compute the rank of a central hyperplane arrangement
rank(Flat)
-- compute the rank of a flat
restriction
-- construct the restriction a hyperplane arrangement to a subspace
restriction(Arrangement,Flat)
-- construct the restriction a hyperplane arrangement to a subspace
restriction(Arrangement,Ideal)
-- construct the restriction a hyperplane arrangement to a subspace
restriction(Arrangement,List)
-- construct the restriction a hyperplane arrangement to a subspace
restriction(Arrangement,RingElement)
-- construct the restriction a hyperplane arrangement to a subspace
restriction(Arrangement,Set)
-- construct the restriction a hyperplane arrangement to a subspace
restriction(Arrangement,ZZ)
-- construct the restriction a hyperplane arrangement to a subspace
restriction(Flat)
-- construct the restriction a hyperplane arrangement to a subspace
ring(Arrangement)
-- get the underlying ring of a hyperplane arrangement
simplify
-- make a simple hyperplane arrangement
subArrangement
-- create the hyperplane arrangement containing a flat
subArrangement(Arrangement,Flat)
-- create the hyperplane arrangement containing a flat
subArrangement(Flat)
-- create the hyperplane arrangement containing a flat
substitute(Arrangement,Ring)
-- change the ring of an arrangement
substitute(Arrangement,RingMap)
-- change the ring of an arrangement
toList(Arrangement)
-- the defining linear forms of an arrangement
toList(Flat)
-- the indices of a flat
trim(Arrangement)
-- make a simple hyperplane arrangement
typeA
-- make the hyperplane arrangement defined by a type $A_n$ root system
typeA(ZZ)
-- make the hyperplane arrangement defined by a type $A_n$ root system
typeA(ZZ,PolynomialRing)
-- make the hyperplane arrangement defined by a type $A_n$ root system
typeA(ZZ,Ring)
-- make the hyperplane arrangement defined by a type $A_n$ root system
typeB
-- make the hyperplane arrangement defined by a type $B_n$ root system
typeB(ZZ)
-- make the hyperplane arrangement defined by a type $B_n$ root system
typeB(ZZ,PolynomialRing)
-- make the hyperplane arrangement defined by a type $B_n$ root system
typeB(ZZ,Ring)
-- make the hyperplane arrangement defined by a type $B_n$ root system
typeD
-- make the hyperplane arrangement defined by a type $D_n$ root system
typeD(ZZ)
-- make the hyperplane arrangement defined by a type $D_n$ root system
typeD(ZZ,PolynomialRing)
-- make the hyperplane arrangement defined by a type $D_n$ root system
typeD(ZZ,Ring)
-- make the hyperplane arrangement defined by a type $D_n$ root system
vee
-- compute the vee operation in the intersection lattice
vee(Flat,Flat)
-- compute the vee operation in the intersection lattice